Paper ID: 2411.12539
Predicting Customer Satisfaction by Replicating the Survey Response Distribution
Etienne Manderscheid, Matthias Lee
For many call centers, customer satisfaction (CSAT) is a key performance indicator (KPI). However, only a fraction of customers take the CSAT survey after the call, leading to a biased and inaccurate average CSAT value, and missed opportunities for coaching, follow-up, and rectification. Therefore, call centers can benefit from a model predicting customer satisfaction on calls where the customer did not complete the survey. Given that CSAT is a closely monitored KPI, it is critical to minimize any bias in the average predicted CSAT (pCSAT). In this paper, we introduce a method such that predicted CSAT (pCSAT) scores accurately replicate the distribution of survey CSAT responses for every call center with sufficient data in a live production environment. The method can be applied to many multiclass classification problems to improve the class balance and minimize its changes upon model updates.
Submitted: Nov 19, 2024