Paper ID: 2411.12570

A data driven approach to classify descriptors based on their efficiency in translating noisy trajectories into physically-relevant information

Simone Martino, Domiziano Doria, Chiara Lionello, Matteo Becchi, Giovanni M. Pavan

Reconstructing the physical complexity of many-body dynamical systems can be challenging. Starting from the trajectories of their constitutive units (raw data), typical approaches require selecting appropriate descriptors to convert them into time-series, which are then analyzed to extract interpretable information. However, identifying the most effective descriptor is often non-trivial. Here, we report a data-driven approach to compare the efficiency of various descriptors in extracting information from noisy trajectories and translating it into physically relevant insights. As a prototypical system with non-trivial internal complexity, we analyze molecular dynamics trajectories of an atomistic system where ice and water coexist in equilibrium near the solid/liquid transition temperature. We compare general and specific descriptors often used in aqueous systems: number of neighbors, molecular velocities, Smooth Overlap of Atomic Positions (SOAP), Local Environments and Neighbors Shuffling (LENS), Orientational Tetrahedral Order, and distance from the fifth neighbor ($d_5$). Using Onion Clustering -- an efficient unsupervised method for single-point time-series analysis -- we assess the maximum extractable information for each descriptor and rank them via a high-dimensional metric. Our results show that advanced descriptors like SOAP and LENS outperform classical ones due to higher signal-to-noise ratios. Nonetheless, even simple descriptors can rival or exceed advanced ones after local signal denoising. For example, $d_5$, initially among the weakest, becomes the most effective at resolving the system's non-local dynamical complexity after denoising. This work highlights the critical role of noise in information extraction from molecular trajectories and offers a data-driven approach to identify optimal descriptors for systems with characteristic internal complexity.

Submitted: Nov 19, 2024