Paper ID: 2411.12720

Scaling laws for nonlinear dynamical models of speech

Sam Kirkham

The addition of a nonlinear restoring force to dynamical models of the speech gesture significantly improves the empirical accuracy of model predictions, but nonlinearity introduces challenges in selecting appropriate parameters and numerical stability, especially when modelling variation in empirical data. We address this issue by introducing simple numerical methods for parameterization of nonlinear task dynamic models. We first illustrate the problem and then outline solutions in the form of power laws that scale nonlinear stiffness terms. We apply the scaling laws to a cubic model and show how they facilitate interpretable simulations of the nonlinear gestural dynamics underpinning speech production.

Submitted: Nov 19, 2024