Paper ID: 2411.12730

Testing classical properties from quantum data

Matthias C. Caro, Preksha Naik, Joseph Slote

Many properties of Boolean functions can be tested far more efficiently than the function can be learned. However, this advantage often disappears when testers are limited to random samples--a natural setting for data science--rather than queries. In this work we investigate the quantum version of this scenario: quantum algorithms that test properties of a function $f$ solely from quantum data in the form of copies of the function state for $f$. For three well-established properties, we show that the speedup lost when restricting classical testers to samples can be recovered by testers that use quantum data. For monotonicity testing, we give a quantum algorithm that uses $\tilde{\mathcal{O}}(n^2)$ function state copies as compared to the $2^{\Omega(\sqrt{n})}$ samples required classically. We also present $\mathcal{O}(1)$-copy testers for symmetry and triangle-freeness, comparing favorably to classical lower bounds of $\Omega(n^{1/4})$ and $\Omega(n)$ samples respectively. These algorithms are time-efficient and necessarily include techniques beyond the Fourier sampling approaches applied to earlier testing problems. These results make the case for a general study of the advantages afforded by quantum data for testing. We contribute to this project by complementing our upper bounds with a lower bound of $\Omega(1/\varepsilon)$ for monotonicity testing from quantum data in the proximity regime $\varepsilon\leq\mathcal{O}(n^{-3/2})$. This implies a strict separation between testing monotonicity from quantum data and from quantum queries--where $\tilde{\mathcal{O}}(n)$ queries suffice when $\varepsilon=\Theta(n^{-3/2})$. We also exhibit a testing problem that can be solved from $\mathcal{O}(1)$ classical queries but requires $\Omega(2^{n/2})$ function state copies, complementing a separation of the same magnitude in the opposite direction derived from the Forrelation problem.

Submitted: Nov 19, 2024