Paper ID: 2411.13899
Schemato -- An LLM for Netlist-to-Schematic Conversion
Ryoga Matsuo, Stefan Uhlich, Arun Venkitaraman, Andrea Bonetti, Chia-Yu Hsieh, Ali Momeni, Lukas Mauch, Augusto Capone, Eisaku Ohbuchi, Lorenzo Servadei
Machine learning models are advancing circuit design, particularly in analog circuits. They typically generate netlists that lack human interpretability. This is a problem as human designers heavily rely on the interpretability of circuit diagrams or schematics to intuitively understand, troubleshoot, and develop designs. Hence, to integrate domain knowledge effectively, it is crucial to translate ML-generated netlists into interpretable schematics quickly and accurately. We propose Schemato, a large language model (LLM) for netlist-to-schematic conversion. In particular, we consider our approach in the two settings of converting netlists to .asc files for LTSpice and LATEX files for CircuiTikz schematics. Experiments on our circuit dataset show that Schemato achieves up to 93% compilation success rate for the netlist-to-LaTeX conversion task, surpassing the 26% rate scored by the state-of-the-art LLMs. Furthermore, our experiments show that Schemato generates schematics with a mean structural similarity index measure that is 3xhigher than the best performing LLMs, therefore closer to the reference human design.
Submitted: Nov 21, 2024