Paper ID: 2411.14252

Intent-Aware Dialogue Generation and Multi-Task Contrastive Learning for Multi-Turn Intent Classification

Junhua Liu, Yong Keat Tan, Bin Fu, Kwan Hui Lim

Generating large-scale, domain-specific, multilingual multi-turn dialogue datasets remains a significant hurdle for training effective Multi-Turn Intent Classification models in chatbot systems. In this paper, we introduce Chain-of-Intent, a novel mechanism that combines Hidden Markov Models with Large Language Models (LLMs) to generate contextually aware, intent-driven conversations through self-play. By extracting domain-specific knowledge from e-commerce chat logs, we estimate conversation turns and intent transitions, which guide the generation of coherent dialogues. Leveraging LLMs to enhance emission probabilities, our approach produces natural and contextually consistent questions and answers. We also propose MINT-CL, a framework for multi-turn intent classification using multi-task contrastive learning, improving classification accuracy without the need for extensive annotated data. Evaluations show that our methods outperform baselines in dialogue quality and intent classification accuracy, especially in multilingual settings, while significantly reducing data generation efforts. Furthermore, we release MINT-E, a multilingual, intent-aware multi-turn e-commerce dialogue corpus to support future research in this area.

Submitted: Nov 21, 2024