Paper ID: 2411.14855

Applications of fractional calculus in learned optimization

Teodor Alexandru Szente, James Harrison, Mihai Zanfir, Cristian Sminchisescu

Fractional gradient descent has been studied extensively, with a focus on its ability to extend traditional gradient descent methods by incorporating fractional-order derivatives. This approach allows for more flexibility in navigating complex optimization landscapes and offers advantages in certain types of problems, particularly those involving non-linearities and chaotic dynamics. Yet, the challenge of fine-tuning the fractional order parameters remains unsolved. In this work, we demonstrate that it is possible to train a neural network to predict the order of the gradient effectively.

Submitted: Nov 22, 2024