Paper ID: 2411.15331
GeoScatt-GNN: A Geometric Scattering Transform-Based Graph Neural Network Model for Ames Mutagenicity Prediction
Abdeljalil Zoubir, Badr Missaoui
This paper tackles the pressing challenge of mutagenicity prediction by introducing three ground-breaking approaches. First, it showcases the superior performance of 2D scattering coefficients extracted from molecular images, compared to traditional molecular descriptors. Second, it presents a hybrid approach that combines geometric graph scattering (GGS), Graph Isomorphism Networks (GIN), and machine learning models, achieving strong results in mutagenicity prediction. Third, it introduces a novel graph neural network architecture, MOLG3-SAGE, which integrates GGS node features into a fully connected graph structure, delivering outstanding predictive accuracy. Experimental results on the ZINC dataset demonstrate significant improvements, emphasizing the effectiveness of blending 2D and geometric scattering techniques with graph neural networks. This study illustrates the potential of GNNs and GGS for mutagenicity prediction, with broad implications for drug discovery and chemical safety assessment.
Submitted: Nov 22, 2024