Paper ID: 2411.16433

Finding Structure in Language Models

Jaap Jumelet

When we speak, write or listen, we continuously make predictions based on our knowledge of a language's grammar. Remarkably, children acquire this grammatical knowledge within just a few years, enabling them to understand and generalise to novel constructions that have never been uttered before. Language models are powerful tools that create representations of language by incrementally predicting the next word in a sentence, and they have had a tremendous societal impact in recent years. The central research question of this thesis is whether these models possess a deep understanding of grammatical structure similar to that of humans. This question lies at the intersection of natural language processing, linguistics, and interpretability. To address it, we will develop novel interpretability techniques that enhance our understanding of the complex nature of large-scale language models. We approach our research question from three directions. First, we explore the presence of abstract linguistic information through structural priming, a key paradigm in psycholinguistics for uncovering grammatical structure in human language processing. Next, we examine various linguistic phenomena, such as adjective order and negative polarity items, and connect a model's comprehension of these phenomena to the data distribution on which it was trained. Finally, we introduce a controlled testbed for studying hierarchical structure in language models using various synthetic languages of increasing complexity and examine the role of feature interactions in modelling this structure. Our findings offer a detailed account of the grammatical knowledge embedded in language model representations and provide several directions for investigating fundamental linguistic questions using computational methods.

Submitted: Nov 25, 2024