Paper ID: 2411.16698

Universal on-chip polarization handling with deep photonic networks

Aycan Deniz Vit, Ujal Rzayev, Bahrem Serhat Danis, Ali Najjar Amiri, Kazim Gorgulu, Emir Salih Magden

We propose a novel design paradigm for arbitrarily capable deep photonic networks of cascaded Mach-Zehnder Interferometers (MZIs) for on-chip universal polarization handling. Using a device architecture made of cascaded Mach-Zehnder interferometers, we modify and train the phase difference between interferometer arms for both polarizations through wide operation bandwidths. Three proof-of-concept polarization handling devices are illustrated using a software-defined, physics-informed neural framework, to achieve user-specified target device responses as functions of polarization and wavelength. These devices include a polarization splitter, a polarization-independent power splitter, and an arbitrary polarization-dependent splitter to illustrate the capabilities of the design framework. The performance for all three devices is optimized using transfer matrix calculations; and their final responses are verified through 3D-FDTD simulations. All devices demonstrate state-of-the-art performance metrics with over 20 dB extinction, and flat-top transmission bands through bandwidths of 120 nm. In addition to the functional diversity enabled, the optimization for each device is completed in under a minute, highlighting the computational efficiency of the design paradigm presented. These results demonstrate the versatility of the deep photonic network design ecosystem in polarization management, unveiling promising prospects for advanced on-chip applications in optical communications, sensing, and computing.

Submitted: Nov 10, 2024