Paper ID: 2411.17567

Improving the Convergence Rates of Forward Gradient Descent with Repeated Sampling

Niklas Dexheimer, Johannes Schmidt-Hieber

Forward gradient descent (FGD) has been proposed as a biologically more plausible alternative of gradient descent as it can be computed without backward pass. Considering the linear model with $d$ parameters, previous work has found that the prediction error of FGD is, however, by a factor $d$ slower than the prediction error of stochastic gradient descent (SGD). In this paper we show that by computing $\ell$ FGD steps based on each training sample, this suboptimality factor becomes $d/(\ell \wedge d)$ and thus the suboptimality of the rate disappears if $\ell \gtrsim d.$ We also show that FGD with repeated sampling can adapt to low-dimensional structure in the input distribution. The main mathematical challenge lies in controlling the dependencies arising from the repeated sampling process.

Submitted: Nov 26, 2024