Paper ID: 2411.18627
Topological Approach for Data Assimilation
Max M. Chumley, Firas A. Khasawneh
Many dynamical systems are difficult or impossible to model using high fidelity physics based models. Consequently, researchers are relying more on data driven models to make predictions and forecasts. Based on limited training data, machine learning models often deviate from the true system states over time and need to be continually updated as new measurements are taken using data assimilation. Classical data assimilation algorithms typically require knowledge of the measurement noise statistics which may be unknown. In this paper, we introduce a new data assimilation algorithm with a foundation in topological data analysis. By leveraging the differentiability of functions of persistence, gradient descent optimization is used to minimize topological differences between measurements and forecast predictions by tuning data driven model coefficients without using noise information from the measurements. We describe the method and focus on its capabilities performance using the chaotic Lorenz system as an example.
Submitted: Nov 12, 2024