Paper ID: 2411.18845

An Integrated Artificial Intelligence Operating System for Advanced Low-Altitude Aviation Applications

Minzhe Tan, Xinlin Fan, Jian He, Yi Hou, Zhan Liu, Yaopeng Jiang, Y.M. Jiang

This paper introduces a high-performance artificial intelligence operating system tailored for low-altitude aviation, designed to address key challenges such as real-time task execution, computational efficiency, and seamless modular collaboration. Built on a powerful hardware platform and leveraging the UNIX architecture, the system implements a distributed data processing strategy that ensures rapid and efficient synchronization across critical modules, including vision, navigation, and perception. By adopting dynamic resource management, it optimally allocates computational resources, such as CPU and GPU, based on task priority and workload, ensuring high performance for demanding tasks like real-time video processing and AI model inference. Furthermore, the system features an advanced interrupt handling mechanism that allows for quick responses to sudden environmental changes, such as obstacle detection, by prioritizing critical tasks, thus improving safety and mission success rates. Robust security measures, including data encryption, access control, and fault tolerance, ensure the system's resilience against external threats and its ability to recover from potential hardware or software failures. Complementing these core features are modular components for image analysis, multi-sensor fusion, dynamic path planning, multi-drone coordination, and ground station monitoring. Additionally, a low-code development platform simplifies user customization, making the system adaptable to various mission-specific needs. This comprehensive approach ensures the system meets the evolving demands of intelligent aviation, providing a stable, efficient, and secure environment for complex drone operations.

Submitted: Nov 28, 2024