Paper ID: 2411.19244

Consolidating and Developing Benchmarking Datasets for the Nepali Natural Language Understanding Tasks

Jinu Nyachhyon, Mridul Sharma, Prajwal Thapa, Bal Krishna Bal

The Nepali language has distinct linguistic features, especially its complex script (Devanagari script), morphology, and various dialects, which pose a unique challenge for natural language processing (NLP) evaluation. While the Nepali Language Understanding Evaluation (Nep-gLUE) benchmark provides a foundation for evaluating models, it remains limited in scope, covering four tasks. This restricts their utility for comprehensive assessments of NLP models. To address this limitation, we introduce eight new datasets, creating a new benchmark, the Nepali Language Understanding Evaluation (NLUE) benchmark, which covers a total of 12 tasks for evaluating the performance of models across a diverse set of Natural Language Understanding (NLU) tasks. The added tasks include single-sentence classification, similarity and paraphrase tasks, and Natural Language Inference (NLI) tasks. On evaluating the models using added tasks, we observe that the existing models fall short in handling complex NLU tasks effectively. This expanded benchmark sets a new standard for evaluating, comparing, and advancing models, contributing significantly to the broader goal of advancing NLP research for low-resource languages.

Submitted: Nov 28, 2024