Paper ID: 2411.19393

Global Tensor Motion Planning

An T. Le, Kay Hansel, João Carvalho, Joe Watson, Julen Urain, Armin Biess, Georgia Chalvatzaki, Jan Peters

Batch planning is increasingly necessary to quickly produce diverse and high-quality motion plans for downstream learning applications, such as distillation and imitation learning. This paper presents Global Tensor Motion Planning (GTMP) -- a sampling-based motion planning algorithm comprising only tensor operations. We introduce a novel discretization structure represented as a random multipartite graph, enabling efficient vectorized sampling, collision checking, and search. We provide a theoretical investigation showing that GTMP exhibits probabilistic completeness while supporting modern GPU/TPU. Additionally, by incorporating smooth structures into the multipartite graph, GTMP directly plans smooth splines without requiring gradient-based optimization. Experiments on lidar-scanned occupancy maps and the MotionBenchMarker dataset demonstrate GTMP's computation efficiency in batch planning compared to baselines, underscoring GTMP's potential as a robust, scalable planner for diverse applications and large-scale robot learning tasks.

Submitted: Nov 28, 2024