Paper ID: 2412.00108
Act Now: A Novel Online Forecasting Framework for Large-Scale Streaming Data
Daojun Liang, Haixia Zhang, Jing Wang, Dongfeng Yuan, Minggao Zhang
In this paper, we find that existing online forecasting methods have the following issues: 1) They do not consider the update frequency of streaming data and directly use labels (future signals) to update the model, leading to information leakage. 2) Eliminating information leakage can exacerbate concept drift and online parameter updates can damage prediction accuracy. 3) Leaving out a validation set cuts off the model's continued learning. 4) Existing GPU devices cannot support online learning of large-scale streaming data. To address the above issues, we propose a novel online learning framework, Act-Now, to improve the online prediction on large-scale streaming data. Firstly, we introduce a Random Subgraph Sampling (RSS) algorithm designed to enable efficient model training. Then, we design a Fast Stream Buffer (FSB) and a Slow Stream Buffer (SSB) to update the model online. FSB updates the model immediately with the consistent pseudo- and partial labels to avoid information leakage. SSB updates the model in parallel using complete labels from earlier times. Further, to address concept drift, we propose a Label Decomposition model (Lade) with statistical and normalization flows. Lade forecasts both the statistical variations and the normalized future values of the data, integrating them through a combiner to produce the final predictions. Finally, we propose to perform online updates on the validation set to ensure the consistency of model learning on streaming data. Extensive experiments demonstrate that the proposed Act-Now framework performs well on large-scale streaming data, with an average 28.4% and 19.5% performance improvement, respectively. Experiments can be reproduced via this https URL
Submitted: Nov 28, 2024