Paper ID: 2412.00665

Learning on Less: Constraining Pre-trained Model Learning for Generalizable Diffusion-Generated Image Detection

Yingjian Chen, Lei Zhang, Yakun Niu, Lei Tan, Pei Chen

Diffusion Models enable realistic image generation, raising the risk of misinformation and eroding public trust. Currently, detecting images generated by unseen diffusion models remains challenging due to the limited generalization capabilities of existing methods. To address this issue, we rethink the effectiveness of pre-trained models trained on large-scale, real-world images. Our findings indicate that: 1) Pre-trained models can cluster the features of real images effectively. 2) Models with pre-trained weights can approximate an optimal generalization solution at a specific training step, but it is extremely unstable. Based on these facts, we propose a simple yet effective training method called Learning on Less (LoL). LoL utilizes a random masking mechanism to constrain the model's learning of the unique patterns specific to a certain type of diffusion model, allowing it to focus on less image content. This leverages the inherent strengths of pre-trained weights while enabling a more stable approach to optimal generalization, which results in the extraction of a universal feature that differentiates various diffusion-generated images from real images. Extensive experiments on the GenImage benchmark demonstrate the remarkable generalization capability of our proposed LoL. With just 1% training data, LoL significantly outperforms the current state-of-the-art, achieving a 13.6% improvement in average ACC across images generated by eight different models.

Submitted: Dec 1, 2024