Paper ID: 2412.01476

Leverage Domain-invariant assumption for regularization

RuiZhe Jiang, Haotian Lei

Over-parameterized neural networks often exhibit a notable gap in performance between the training and test sets, a phenomenon known as overfitting. To mitigate this, various regularization techniques have been proposed, each tailored to specific tasks and model architectures. In this paper, we offer a novel perspective on overfitting: models tend to learn different representations from distinct i.i.d. datasets. Building on this insight, we introduce \textbf{Sameloss}, an adaptive method that regularizes models by constraining the feature differences across random subsets of the same training set. Due to its minimal prior assumptions, this approach is broadly applicable across different architectures and tasks. Our experiments demonstrate that \textbf{Sameloss} effectively reduces overfitting with low sensitivity to hyperparameters and minimal computational cost. It exhibits particularly strong memory suppression and fosters normal convergence, even when the model is beginning to overfit. \textbf{Even in the absence of significant overfitting, our method consistently improves accuracy and lowers validation loss.}

Submitted: Dec 2, 2024