Paper ID: 2412.01865
Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data
Jordan Jomsky, Zongyu Li, Yiren Zhang, Tal Nuriel, Jia Guo
The increasing global aging population necessitates improved methods to assess brain aging and its related neurodegenerative changes. Brain Age Gap Estimation (BrainAGE) offers a neuroimaging biomarker for understanding these changes by predicting brain age from MRI scans. Current approaches primarily use T1-weighted magnetic resonance imaging (T1w MRI) data, capturing only structural brain information. To address this limitation, AI-generated Cerebral Blood Volume (AICBV) data, synthesized from non-contrast MRI scans, offers functional insights by revealing subtle blood-tissue contrasts otherwise undetectable in standard imaging. We integrated AICBV with T1w MRI to predict brain age, combining both structural and functional metrics. We developed a deep learning model using a VGG-based architecture for both modalities and combined their predictions using linear regression. Our model achieved a mean absolute error (MAE) of 3.95 years and an $R^2$ of 0.943 on the test set ($n = 288$), outperforming existing models trained on similar data. We have further created gradient-based class activation maps (Grad-CAM) to visualize the regions of the brain that most influenced the model's predictions, providing interpretable insights into the structural and functional contributors to brain aging.
Submitted: Dec 1, 2024