Paper ID: 2412.02818
RoboFail: Analyzing Failures in Robot Learning Policies
Som Sagar, Ransalu Senanayake
Despite being trained on increasingly large datasets, robot models often overfit to specific environments or datasets. Consequently, they excel within their training distribution but face challenges in generalizing to novel or unforeseen scenarios. This paper presents a method to proactively identify failure mode probabilities in robot manipulation policies, providing insights into where these models are likely to falter. To this end, since exhaustively searching over a large space of failures is infeasible, we propose a deep reinforcement learning-based framework, RoboFail. It is designed to detect scenarios prone to failure and quantify their likelihood, thus offering a structured approach to anticipate failures. By identifying these high-risk states in advance, RoboFail enables researchers and engineers to better understand the robustness limits of robot policies, contributing to the development of safer and more adaptable robotic systems.
Submitted: Dec 3, 2024