Paper ID: 2412.03736

Domain-specific Question Answering with Hybrid Search

Dewang Sultania, Zhaoyu Lu, Twisha Naik, Franck Dernoncourt, David Seunghyun Yoon, Sanat Sharma, Trung Bui, Ashok Gupta, Tushar Vatsa, Suhas Suresha, Ishita Verma, Vibha Belavadi, Cheng Chen, Michael Friedrich

Domain specific question answering is an evolving field that requires specialized solutions to address unique challenges. In this paper, we show that a hybrid approach combining a fine-tuned dense retriever with keyword based sparse search methods significantly enhances performance. Our system leverages a linear combination of relevance signals, including cosine similarity from dense retrieval, BM25 scores, and URL host matching, each with tunable boost parameters. Experimental results indicate that this hybrid method outperforms our single-retriever system, achieving improved accuracy while maintaining robust contextual grounding. These findings suggest that integrating multiple retrieval methodologies with weighted scoring effectively addresses the complexities of domain specific question answering in enterprise settings.

Submitted: Dec 4, 2024