Paper ID: 2412.05596
TB-HSU: Hierarchical 3D Scene Understanding with Contextual Affordances
Wenting Xu, Viorela Ila, Luping Zhou, Craig T. Jin
The concept of function and affordance is a critical aspect of 3D scene understanding and supports task-oriented objectives. In this work, we develop a model that learns to structure and vary functional affordance across a 3D hierarchical scene graph representing the spatial organization of a scene. The varying functional affordance is designed to integrate with the varying spatial context of the graph. More specifically, we develop an algorithm that learns to construct a 3D hierarchical scene graph (3DHSG) that captures the spatial organization of the scene. Starting from segmented object point clouds and object semantic labels, we develop a 3DHSG with a top node that identifies the room label, child nodes that define local spatial regions inside the room with region-specific affordances, and grand-child nodes indicating object locations and object-specific affordances. To support this work, we create a custom 3DHSG dataset that provides ground truth data for local spatial regions with region-specific affordances and also object-specific affordances for each object. We employ a transformer-based model to learn the 3DHSG. We use a multi-task learning framework that learns both room classification and learns to define spatial regions within the room with region-specific affordances. Our work improves on the performance of state-of-the-art baseline models and shows one approach for applying transformer models to 3D scene understanding and the generation of 3DHSGs that capture the spatial organization of a room. The code and dataset are publicly available.
Submitted: Dec 7, 2024