Paper ID: 2412.05780

BudgetFusion: Perceptually-Guided Adaptive Diffusion Models

Qinchan Li, Kenneth Chen, Changyue Su, Qi Sun

Diffusion models have shown unprecedented success in the task of text-to-image generation. While these models are capable of generating high-quality and realistic images, the complexity of sequential denoising has raised societal concerns regarding high computational demands and energy consumption. In response, various efforts have been made to improve inference efficiency. However, most of the existing efforts have taken a fixed approach with neural network simplification or text prompt optimization. Are the quality improvements from all denoising computations equally perceivable to humans? We observed that images from different text prompts may require different computational efforts given the desired content. The observation motivates us to present BudgetFusion, a novel model that suggests the most perceptually efficient number of diffusion steps before a diffusion model starts to generate an image. This is achieved by predicting multi-level perceptual metrics relative to diffusion steps. With the popular Stable Diffusion as an example, we conduct both numerical analyses and user studies. Our experiments show that BudgetFusion saves up to five seconds per prompt without compromising perceptual similarity. We hope this work can initiate efforts toward answering a core question: how much do humans perceptually gain from images created by a generative model, per watt of energy?

Submitted: Dec 8, 2024