Paper ID: 2412.05846

Kernel Stochastic Configuration Networks for Nonlinear Regression

Yongxuan Chen, Dianhui Wang

Stochastic configuration networks (SCNs), as a class of randomized learner models, are featured by its way of random parameters assignment in the light of a supervisory mechanism, resulting in the universal approximation property at algorithmic level. This paper presents a kernel version of SCNs, termed KSCNs, aiming to enhance model's representation learning capability and performance stability. The random bases of a built SCN model can be used to span a reproducing kernel Hilbert space (RKHS), followed by our proposed algorithm for constructing KSCNs. It is shown that the data distribution in the reconstructive space is favorable for regression solving and the proposed KSCN learner models hold the universal approximation property. Three benchmark datasets including two industrial datasets are used in this study for performance evaluation. Experimental results with comparisons against existing solutions clearly demonstrate that the proposed KSCN remarkably outperforms the original SCNs and some typical kernel methods for resolving nonlinear regression problems in terms of the learning performance, the model's stability and robustness with respect to the kernel parameter settings.

Submitted: Dec 8, 2024