Paper ID: 2412.06166

MVD: A Multi-Lingual Software Vulnerability Detection Framework

Boyu Zhang, Triet H. M. Le, M. Ali Babar

Software vulnerabilities can result in catastrophic cyberattacks that increasingly threaten business operations. Consequently, ensuring the safety of software systems has become a paramount concern for both private and public sectors. Recent literature has witnessed increasing exploration of learning-based approaches for software vulnerability detection. However, a key limitation of these techniques is their primary focus on a single programming language, such as C/C++, which poses constraints considering the polyglot nature of modern software projects. Further, there appears to be an oversight in harnessing the synergies of vulnerability knowledge across varied languages, potentially underutilizing the full capabilities of these methods. To address the aforementioned issues, we introduce MVD - an innovative multi-lingual vulnerability detection framework. This framework acquires the ability to detect vulnerabilities across multiple languages by concurrently learning from vulnerability data of various languages, which are curated by our specialized pipeline. We also incorporate incremental learning to enable the detection capability of MVD to be extended to new languages, thus augmenting its practical utility. Extensive experiments on our curated dataset of more than 11K real-world multi-lingual vulnerabilities substantiate that our framework significantly surpasses state-of-the-art methods in multi-lingual vulnerability detection by 83.7% to 193.6% in PR-AUC. The results also demonstrate that MVD detects vulnerabilities well for new languages without compromising the detection performance of previously trained languages, even when training data for the older languages is unavailable. Overall, our findings motivate and pave the way for the prediction of multi-lingual vulnerabilities in modern software systems.

Submitted: Dec 9, 2024