Paper ID: 2412.06229
LLMs as Debate Partners: Utilizing Genetic Algorithms and Adversarial Search for Adaptive Arguments
Prakash Aryan
This paper introduces DebateBrawl, an innovative AI-powered debate platform that integrates Large Language Models (LLMs), Genetic Algorithms (GA), and Adversarial Search (AS) to create an adaptive and engaging debating experience. DebateBrawl addresses the limitations of traditional LLMs in strategic planning by incorporating evolutionary optimization and game-theoretic techniques. The system demonstrates remarkable performance in generating coherent, contextually relevant arguments while adapting its strategy in real-time. Experimental results involving 23 debates show balanced outcomes between AI and human participants, with the AI system achieving an average score of 2.72 compared to the human average of 2.67 out of 10. User feedback indicates significant improvements in debating skills and a highly satisfactory learning experience, with 85% of users reporting improved debating abilities and 78% finding the AI opponent appropriately challenging. The system's ability to maintain high factual accuracy (92% compared to 78% in human-only debates) while generating diverse arguments addresses critical concerns in AI-assisted discourse. DebateBrawl not only serves as an effective educational tool but also contributes to the broader goal of improving public discourse through AI-assisted argumentation. The paper discusses the ethical implications of AI in persuasive contexts and outlines the measures implemented to ensure responsible development and deployment of the system, including robust fact-checking mechanisms and transparency in decision-making processes.
Submitted: Dec 9, 2024