Paper ID: 2412.07261
MemHunter: Automated and Verifiable Memorization Detection at Dataset-scale in LLMs
Zhenpeng Wu, Jian Lou, Zibin Zheng, Chuan Chen
Large language models (LLMs) have been shown to memorize and reproduce content from their training data, raising significant privacy concerns, especially with web-scale datasets. Existing methods for detecting memorization are largely sample-specific, relying on manually crafted or discretely optimized memory-inducing prompts generated on a per-sample basis, which become impractical for dataset-level detection due to the prohibitive computational cost of iterating over all samples. In real-world scenarios, data owners may need to verify whether a susceptible LLM has memorized their dataset, particularly if the LLM may have collected the data from the web without authorization. To address this, we introduce \textit{MemHunter}, which trains a memory-inducing LLM and employs hypothesis testing to efficiently detect memorization at the dataset level, without requiring sample-specific memory inducing. Experiments on models such as Pythia and Llama-2 demonstrate that \textit{MemHunter} can extract up to 40\% more training data than existing methods under constrained time resources and reduce search time by up to 80\% when integrated as a plug-in. Crucially, \textit{MemHunter} is the first method capable of dataset-level memorization detection, providing an indispensable tool for assessing privacy risks in LLMs that are powered by vast web-sourced datasets.
Submitted: Dec 10, 2024