Paper ID: 2412.08880
FAWAC: Feasibility Informed Advantage Weighted Regression for Persistent Safety in Offline Reinforcement Learning
Prajwal Koirala, Zhanhong Jiang, Soumik Sarkar, Cody Fleming
Safe offline reinforcement learning aims to learn policies that maximize cumulative rewards while adhering to safety constraints, using only offline data for training. A key challenge is balancing safety and performance, particularly when the policy encounters out-of-distribution (OOD) states and actions, which can lead to safety violations or overly conservative behavior during deployment. To address these challenges, we introduce Feasibility Informed Advantage Weighted Actor-Critic (FAWAC), a method that prioritizes persistent safety in constrained Markov decision processes (CMDPs). FAWAC formulates policy optimization with feasibility conditions derived specifically for offline datasets, enabling safe policy updates in non-parametric policy space, followed by projection into parametric space for constrained actor training. By incorporating a cost-advantage term into Advantage Weighted Regression (AWR), FAWAC ensures that the safety constraints are respected while maximizing performance. Additionally, we propose a strategy to address a more challenging class of problems that involves tempting datasets where trajectories are predominantly high-rewarded but unsafe. Empirical evaluations on standard benchmarks demonstrate that FAWAC achieves strong results, effectively balancing safety and performance in learning policies from the static datasets.
Submitted: Dec 12, 2024