Paper ID: 2412.09483

Early Detection of At-Risk Students Using Machine Learning

Azucena L. Jimenez Martinez, Kanika Sood, Rakeshkumar Mahto

This research presents preliminary work to address the challenge of identifying at-risk students using supervised machine learning and three unique data categories: engagement, demographics, and performance data collected from Fall 2023 using Canvas and the California State University, Fullerton dashboard. We aim to tackle the persistent challenges of higher education retention and student dropout rates by screening for at-risk students and building a high-risk identification system. By focusing on previously overlooked behavioral factors alongside traditional metrics, this work aims to address educational gaps, enhance student outcomes, and significantly boost student success across disciplines at the University. Pre-processing steps take place to establish a target variable, anonymize student information, manage missing data, and identify the most significant features. Given the mixed data types in the datasets and the binary classification nature of this study, this work considers several machine learning models, including Support Vector Machines (SVM), Naive Bayes, K-nearest neighbors (KNN), Decision Trees, Logistic Regression, and Random Forest. These models predict at-risk students and identify critical periods of the semester when student performance is most vulnerable. We will use validation techniques such as train test split and k-fold cross-validation to ensure the reliability of the models. Our analysis indicates that all algorithms generate an acceptable outcome for at-risk student predictions, while Naive Bayes performs best overall.

Submitted: Dec 12, 2024