Paper ID: 2412.09928

Leveraging Multimodal Methods and Spontaneous Speech for Alzheimer's Disease Identification

Yifan Gao, Long Guo, Hong Liu

Cognitive impairment detection through spontaneous speech offers potential for early diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). The PROCESS Grand Challenge, part of ICASSP 2025, focuses on advancing this field with innovative solutions for classification and regression tasks. In this work, we integrate interpretable features with temporal features extracted from pre-trained models through a multimodal fusion strategy. For the classification task, our model achieved an F1-score of 0.649 in predicting cognitive states (healthy, MCI, dementia). For the regression task, which involves MMSE score prediction, we obtained a root-mean-square error (RMSE) of 2.628. These results led to our team securing the top overall ranking in the competition.

Submitted: Dec 13, 2024