Paper ID: 2412.10096
Reward Machine Inference for Robotic Manipulation
Mattijs Baert, Sam Leroux, Pieter Simoens
Learning from Demonstrations (LfD) and Reinforcement Learning (RL) have enabled robot agents to accomplish complex tasks. Reward Machines (RMs) enhance RL's capability to train policies over extended time horizons by structuring high-level task information. In this work, we introduce a novel LfD approach for learning RMs directly from visual demonstrations of robotic manipulation tasks. Unlike previous methods, our approach requires no predefined propositions or prior knowledge of the underlying sparse reward signals. Instead, it jointly learns the RM structure and identifies key high-level events that drive transitions between RM states. We validate our method on vision-based manipulation tasks, showing that the inferred RM accurately captures task structure and enables an RL agent to effectively learn an optimal policy.
Submitted: Dec 13, 2024