Paper ID: 2412.10224

SPT: Sequence Prompt Transformer for Interactive Image Segmentation

Senlin Cheng, Haopeng Sun

Interactive segmentation aims to extract objects of interest from an image based on user-provided clicks. In real-world applications, there is often a need to segment a series of images featuring the same target object. However, existing methods typically process one image at a time, failing to consider the sequential nature of the images. To overcome this limitation, we propose a novel method called Sequence Prompt Transformer (SPT), the first to utilize sequential image information for interactive segmentation. Our model comprises two key components: (1) Sequence Prompt Transformer (SPT) for acquiring information from sequence of images, clicks and masks to improve accurate. (2) Top-k Prompt Selection (TPS) selects precise prompts for SPT to further enhance the segmentation effect. Additionally, we create the ADE20K-Seq benchmark to better evaluate model performance. We evaluate our approach on multiple benchmark datasets and show that our model surpasses state-of-the-art methods across all datasets.

Submitted: Dec 13, 2024