Paper ID: 2412.10415
Generative Adversarial Reviews: When LLMs Become the Critic
Nicolas Bougie, Narimasa Watanabe
The peer review process is fundamental to scientific progress, determining which papers meet the quality standards for publication. Yet, the rapid growth of scholarly production and increasing specialization in knowledge areas strain traditional scientific feedback mechanisms. In light of this, we introduce Generative Agent Reviewers (GAR), leveraging LLM-empowered agents to simulate faithful peer reviewers. To enable generative reviewers, we design an architecture that extends a large language model with memory capabilities and equips agents with reviewer personas derived from historical data. Central to this approach is a graph-based representation of manuscripts, condensing content and logically organizing information - linking ideas with evidence and technical details. GAR's review process leverages external knowledge to evaluate paper novelty, followed by detailed assessment using the graph representation and multi-round assessment. Finally, a meta-reviewer aggregates individual reviews to predict the acceptance decision. Our experiments demonstrate that GAR performs comparably to human reviewers in providing detailed feedback and predicting paper outcomes. Beyond mere performance comparison, we conduct insightful experiments, such as evaluating the impact of reviewer expertise and examining fairness in reviews. By offering early expert-level feedback, typically restricted to a limited group of researchers, GAR democratizes access to transparent and in-depth evaluation.
Submitted: Dec 9, 2024