Paper ID: 2412.11468

Block-Based Multi-Scale Image Rescaling

Jian Li, Siwang Zhou

Image rescaling (IR) seeks to determine the optimal low-resolution (LR) representation of a high-resolution (HR) image to reconstruct a high-quality super-resolution (SR) image. Typically, HR images with resolutions exceeding 2K possess rich information that is unevenly distributed across the image. Traditional image rescaling methods often fall short because they focus solely on the overall scaling rate, ignoring the varying amounts of information in different parts of the image. To address this limitation, we propose a Block-Based Multi-Scale Image Rescaling Framework (BBMR), tailored for IR tasks involving HR images of 2K resolution and higher. BBMR consists of two main components: the Downscaling Module and the Upscaling Module. In the Downscaling Module, the HR image is segmented into sub-blocks of equal size, with each sub-block receiving a dynamically allocated scaling rate while maintaining a constant overall scaling rate. For the Upscaling Module, we introduce the Joint Super-Resolution method (JointSR), which performs SR on these sub-blocks with varying scaling rates and effectively eliminates blocking artifacts. Experimental results demonstrate that BBMR significantly enhances the SR image quality on the of 2K and 4K test dataset compared to initial network image rescaling methods.

Submitted: Dec 16, 2024