Paper ID: 2412.11609

CLIP-SR: Collaborative Linguistic and Image Processing for Super-Resolution

Bingwen Hu, Heng Liu, Zhedong Zheng, Ping Liu

Convolutional Neural Networks (CNNs) have advanced Image Super-Resolution (SR), but most CNN-based methods rely solely on pixel-based transformations, often leading to artifacts and blurring, particularly with severe downsampling (e.g., 8x or 16x). Recent text-guided SR methods attempt to leverage textual information for enhanced detail, but they frequently struggle with effective alignment, resulting in inconsistent semantic coherence. To address these limitations, we introduce a multi-modal semantic enhancement approach that combines textual semantics with visual features, effectively tackling semantic mismatches and detail loss in highly degraded LR images. Our proposed multi-modal collaborative framework enables the production of realistic and high-quality SR images at significant up-scaling factors. The framework integrates text and image inputs, employing a prompt predictor, Text-Image Fusion Block (TIFBlock), and Iterative Refinement Module alongside CLIP (Contrastive Language-Image Pretraining) features to guide a progressive enhancement process with fine-grained alignment. This alignment produces high-resolution outputs with crisp details and semantic coherence, even at large scaling factors. Through extensive comparative experiments and ablation studies, we validate the effectiveness of our approach. Additionally, by incorporating textual semantic guidance, our technique enables a degree of super-resolution editability while maintaining semantic coherence.

Submitted: Dec 16, 2024