Paper ID: 2412.11890

SegMAN: Omni-scale Context Modeling with State Space Models and Local Attention for Semantic Segmentation

Yunxiang Fu, Meng Lou, Yizhou Yu

High-quality semantic segmentation relies on three key capabilities: global context modeling, local detail encoding, and multi-scale feature extraction. However, recent methods struggle to possess all these capabilities simultaneously. Hence, we aim to empower segmentation networks to simultaneously carry out efficient global context modeling, high-quality local detail encoding, and rich multi-scale feature representation for varying input resolutions. In this paper, we introduce SegMAN, a novel linear-time model comprising a hybrid feature encoder dubbed SegMAN Encoder, and a decoder based on state space models. Specifically, the SegMAN Encoder synergistically integrates sliding local attention with dynamic state space models, enabling highly efficient global context modeling while preserving fine-grained local details. Meanwhile, the MMSCopE module in our decoder enhances multi-scale context feature extraction and adaptively scales with the input resolution. We comprehensively evaluate SegMAN on three challenging datasets: ADE20K, Cityscapes, and COCO-Stuff. For instance, SegMAN-B achieves 52.6% mIoU on ADE20K, outperforming SegNeXt-L by 1.6% mIoU while reducing computational complexity by over 15% GFLOPs. On Cityscapes, SegMAN-B attains 83.8% mIoU, surpassing SegFormer-B3 by 2.1% mIoU with approximately half the GFLOPs. Similarly, SegMAN-B improves upon VWFormer-B3 by 1.6% mIoU with lower GFLOPs on the COCO-Stuff dataset. Our code is available at this https URL

Submitted: Dec 16, 2024