Paper ID: 2412.11931

Speeding Up the NSGA-II With a Simple Tie-Breaking Rule

Benjamin Doerr, Tudor Ivan, Martin S. Krejca

The non-dominated sorting genetic algorithm~II (NSGA-II) is the most popular multi-objective optimization heuristic. Recent mathematical runtime analyses have detected two shortcomings in discrete search spaces, namely, that the NSGA-II has difficulties with more than two objectives and that it is very sensitive to the choice of the population size. To overcome these difficulties, we analyze a simple tie-breaking rule in the selection of the next population. Similar rules have been proposed before, but have found only little acceptance. We prove the effectiveness of our tie-breaking rule via mathematical runtime analyses on the classic OneMinMax, LeadingOnesTrailingZeros, and OneJumpZeroJump benchmarks. We prove that this modified NSGA-II can optimize the three benchmarks efficiently also for many objectives, in contrast to the exponential lower runtime bound previously shown for OneMinMax with three or more objectives. For the bi-objective problems, we show runtime guarantees that do not increase when moderately increasing the population size over the minimum admissible size. For example, for the OneJumpZeroJump problem with representation length $n$ and gap parameter $k$, we show a runtime guarantee of $O(\max\{n^{k+1},Nn\})$ function evaluations when the population size is at least four times the size of the Pareto front. For population sizes larger than the minimal choice $N = \Theta(n)$, this result improves considerably over the $\Theta(Nn^k)$ runtime of the classic NSGA-II.

Submitted: Dec 16, 2024