Paper ID: 2412.12422
Assessing the Limitations of Large Language Models in Clinical Fact Decomposition
Monica Munnangi, Akshay Swaminathan, Jason Alan Fries, Jenelle Jindal, Sanjana Narayanan, Ivan Lopez, Lucia Tu, Philip Chung, Jesutofunmi A. Omiye, Mehr Kashyap, Nigam Shah
Verifying factual claims is critical for using large language models (LLMs) in healthcare. Recent work has proposed fact decomposition, which uses LLMs to rewrite source text into concise sentences conveying a single piece of information, as an approach for fine-grained fact verification. Clinical documentation poses unique challenges for fact decomposition due to dense terminology and diverse note types. To explore these challenges, we present FactEHR, a dataset consisting of full document fact decompositions for 2,168 clinical notes spanning four types from three hospital systems. Our evaluation, including review by clinicians, highlights significant variability in the quality of fact decomposition for four commonly used LLMs, with some LLMs generating 2.6x more facts per sentence than others. The results underscore the need for better LLM capabilities to support factual verification in clinical text. To facilitate future research in this direction, we plan to release our code at \url{this https URL}.
Submitted: Dec 17, 2024