Paper ID: 2412.12597
Distribution-Free Uncertainty Quantification in Mechanical Ventilation Treatment: A Conformal Deep Q-Learning Framework
Niloufar Eghbali, Tuka Alhanai, Mohammad M. Ghassemi
Mechanical Ventilation (MV) is a critical life-support intervention in intensive care units (ICUs). However, optimal ventilator settings are challenging to determine because of the complexity of balancing patient-specific physiological needs with the risks of adverse outcomes that impact morbidity, mortality, and healthcare costs. This study introduces ConformalDQN, a novel distribution-free conformal deep Q-learning approach for optimizing mechanical ventilation in intensive care units. By integrating conformal prediction with deep reinforcement learning, our method provides reliable uncertainty quantification, addressing the challenges of Q-value overestimation and out-of-distribution actions in offline settings. We trained and evaluated our model using ICU patient records from the MIMIC-IV database. ConformalDQN extends the Double DQN architecture with a conformal predictor and employs a composite loss function that balances Q-learning with well-calibrated probability estimation. This enables uncertainty-aware action selection, allowing the model to avoid potentially harmful actions in unfamiliar states and handle distribution shifts by being more conservative in out-of-distribution scenarios. Evaluation against baseline models, including physician policies, policy constraint methods, and behavior cloning, demonstrates that ConformalDQN consistently makes recommendations within clinically safe and relevant ranges, outperforming other methods by increasing the 90-day survival rate. Notably, our approach provides an interpretable measure of confidence in its decisions, which is crucial for clinical adoption and potential human-in-the-loop implementations.
Submitted: Dec 17, 2024