Paper ID: 2412.12982

Stable Diffusion is a Natural Cross-Modal Decoder for Layered AI-generated Image Compression

Ruijie Chen, Qi Mao, Zhengxue Cheng

Recent advances in Artificial Intelligence Generated Content (AIGC) have garnered significant interest, accompanied by an increasing need to transmit and compress the vast number of AI-generated images (AIGIs). However, there is a noticeable deficiency in research focused on compression methods for AIGIs. To address this critical gap, we introduce a scalable cross-modal compression framework that incorporates multiple human-comprehensible modalities, designed to efficiently capture and relay essential visual information for AIGIs. In particular, our framework encodes images into a layered bitstream consisting of a semantic layer that delivers high-level semantic information through text prompts; a structural layer that captures spatial details using edge or skeleton maps; and a texture layer that preserves local textures via a colormap. Utilizing Stable Diffusion as the backend, the framework effectively leverages these multimodal priors for image generation, effectively functioning as a decoder when these priors are encoded. Qualitative and quantitative results show that our method proficiently restores both semantic and visual details, competing against baseline approaches at extremely low bitrates ( <0.02 bpp). Additionally, our framework facilitates downstream editing applications without requiring full decoding, thereby paving a new direction for future research in AIGI compression.

Submitted: Dec 17, 2024