Paper ID: 2412.13972
Decentralized Convergence to Equilibrium Prices in Trading Networks
Edwin Lock, Benjamin Patrick Evans, Eleonora Kreacic, Sujay Bhatt, Alec Koppel, Sumitra Ganesh, Paul W. Goldberg
We propose a decentralized market model in which agents can negotiate bilateral contracts. This builds on a similar, but centralized, model of trading networks introduced by Hatfield et al. (2013). Prior work has established that fully-substitutable preferences guarantee the existence of competitive equilibria which can be centrally computed. Our motivation comes from the fact that prices in markets such as over-the-counter markets and used car markets arise from \textit{decentralized} negotiation among agents, which has left open an important question as to whether equilibrium prices can emerge from agent-to-agent bilateral negotiations. We design a best response dynamic intended to capture such negotiations between market participants. We assume fully substitutable preferences for market participants. In this setting, we provide proofs of convergence for sparse markets ({covering many real world markets of interest}), and experimental results for more general cases, demonstrating that prices indeed reach equilibrium, quickly, via bilateral negotiations. Our best response dynamic, and its convergence behavior, forms an important first step in understanding how decentralized markets reach, and retain, equilibrium.
Submitted: Dec 18, 2024