Paper ID: 2412.14141
LLMs can realize combinatorial creativity: generating creative ideas via LLMs for scientific research
Tianyang Gu, Jingjin Wang, Zhihao Zhang, HaoHong Li
Scientific idea generation has been extensively studied in creativity theory and computational creativity research, providing valuable frameworks for understanding and implementing creative processes. However, recent work using Large Language Models (LLMs) for research idea generation often overlooks these theoretical foundations. We present a framework that explicitly implements combinatorial creativity theory using LLMs, featuring a generalization-level retrieval system for cross-domain knowledge discovery and a structured combinatorial process for idea generation. The retrieval system maps concepts across different abstraction levels to enable meaningful connections between disparate domains, while the combinatorial process systematically analyzes and recombines components to generate novel solutions. Experiments on the OAG-Bench dataset demonstrate our framework's effectiveness, consistently outperforming baseline approaches in generating ideas that align with real research developments (improving similarity scores by 7\%-10\% across multiple metrics). Our results provide strong evidence that LLMs can effectively realize combinatorial creativity when guided by appropriate theoretical frameworks, contributing both to practical advancement of AI-assisted research and theoretical understanding of machine creativity.
Submitted: Dec 18, 2024