Paper ID: 2412.14833

Synchronized and Fine-Grained Head for Skeleton-Based Ambiguous Action Recognition

Hao Huang, Yujie Lin, Siyu Chen, Haiyang Liu

Skeleton-based action recognition using GCNs has achieved remarkable performance, but recognizing ambiguous actions, such as "waving" and "saluting", remains a significant challenge. Existing methods typically rely on a serial combination of GCNs and TCNs, where spatial and temporal features are extracted independently, leading to an unbalanced spatial-temporal information, which hinders accurate action recognition. Moreover, existing methods for ambiguous actions often overemphasize local details, resulting in the loss of crucial global context, which further complicates the task of differentiating ambiguous actions. To address these challenges, we propose a lightweight plug-and-play module called Synchronized and Fine-grained Head (SF-Head), inserted between GCN and TCN layers. SF-Head first conducts Synchronized Spatial-Temporal Extraction (SSTE) with a Feature Redundancy Loss (F-RL), ensuring a balanced interaction between the two types of features. It then performs Adaptive Cross-dimensional Feature Aggregation (AC-FA), with a Feature Consistency Loss (F-CL), which aligns the aggregated feature with their original spatial-temporal feature. This aggregation step effectively combines both global context and local details. Experimental results on NTU RGB+D 60, NTU RGB+D 120, and NW-UCLA datasets demonstrate significant improvements in distinguishing ambiguous actions. Our code will be made available at this https URL

Submitted: Dec 19, 2024