Paper ID: 2412.14959

Understanding the Dark Side of LLMs' Intrinsic Self-Correction

Qingjie Zhang, Han Qiu, Di Wang, Haoting Qian, Yiming Li, Tianwei Zhang, Minlie Huang

Intrinsic self-correction was proposed to improve LLMs' responses via feedback prompts solely based on their inherent capability. However, recent works show that LLMs' intrinsic self-correction fails without oracle labels as feedback prompts. In this paper, we aim to interpret LLMs' intrinsic self-correction for different tasks, especially for those failure cases. By including one simple task and three complex tasks with state-of-the-art (SOTA) LLMs like ChatGPT families (o1, 4o, 3.5-turbo) and Llama families (2-7B, 3-8B, and 3.1-8B), we design three interpretation methods to reveal the dark side of LLMs' intrinsic self-correction. We identify intrinsic self-correction can (1) cause LLMs to waver both intermedia and final answers and lead to prompt bias on simple factual questions; (2) introduce human-like cognitive bias on complex tasks. In light of our findings, we also provide two simple yet effective strategies for alleviation: question repeating and supervised fine-tuning with a few samples. We open-source our work at this https URL

Submitted: Dec 19, 2024