Paper ID: 2412.15280

Context-DPO: Aligning Language Models for Context-Faithfulness

Baolong Bi, Shaohan Huang, Yiwei Wang, Tianchi Yang, Zihan Zhang, Haizhen Huang, Lingrui Mei, Junfeng Fang, Zehao Li, Furu Wei, Weiwei Deng, Feng Sun, Qi Zhang, Shenghua Liu

Reliable responses from large language models (LLMs) require adherence to user instructions and retrieved information. While alignment techniques help LLMs align with human intentions and values, improving context-faithfulness through alignment remains underexplored. To address this, we propose $\textbf{Context-DPO}$, the first alignment method specifically designed to enhance LLMs' context-faithfulness. We introduce $\textbf{ConFiQA}$, a benchmark that simulates Retrieval-Augmented Generation (RAG) scenarios with knowledge conflicts to evaluate context-faithfulness. By leveraging faithful and stubborn responses to questions with provided context from ConFiQA, our Context-DPO aligns LLMs through direct preference optimization. Extensive experiments demonstrate that our Context-DPO significantly improves context-faithfulness, achieving 35% to 280% improvements on popular open-source models. Further analysis demonstrates that Context-DPO preserves LLMs' generative capabilities while providing interpretable insights into context utilization. Our code and data are released at this https URL

Submitted: Dec 18, 2024