Paper ID: 2412.15320
Multi-concept Model Immunization through Differentiable Model Merging
Amber Yijia Zheng, Raymond A. Yeh
Model immunization is an emerging direction that aims to mitigate the potential risk of misuse associated with open-sourced models and advancing adaptation methods. The idea is to make the released models' weights difficult to fine-tune on certain harmful applications, hence the name ``immunized''. Recent work on model immunization focuses on the single-concept setting. However, models need to be immunized against multiple concepts in real-world situations. To address this gap, we propose an immunization algorithm that, simultaneously, learns a single ``difficult initialization'' for adaptation methods over a set of concepts. We achieve this by incorporating a differentiable merging layer that combines a set of model weights adapted over multiple concepts. In our experiments, we demonstrate the effectiveness of multi-concept immunization by generalizing prior work's experiment setup of re-learning and personalization adaptation to multiple concepts.
Submitted: Dec 19, 2024