Paper ID: 2412.15388
Investigating Relational State Abstraction in Collaborative MARL
Sharlin Utke, Jeremie Houssineau, Giovanni Montana
This paper explores the impact of relational state abstraction on sample efficiency and performance in collaborative Multi-Agent Reinforcement Learning. The proposed abstraction is based on spatial relationships in environments where direct communication between agents is not allowed, leveraging the ubiquity of spatial reasoning in real-world multi-agent scenarios. We introduce MARC (Multi-Agent Relational Critic), a simple yet effective critic architecture incorporating spatial relational inductive biases by transforming the state into a spatial graph and processing it through a relational graph neural network. The performance of MARC is evaluated across six collaborative tasks, including a novel environment with heterogeneous agents. We conduct a comprehensive empirical analysis, comparing MARC against state-of-the-art MARL baselines, demonstrating improvements in both sample efficiency and asymptotic performance, as well as its potential for generalization. Our findings suggest that a minimal integration of spatial relational inductive biases as abstraction can yield substantial benefits without requiring complex designs or task-specific engineering. This work provides insights into the potential of relational state abstraction to address sample efficiency, a key challenge in MARL, offering a promising direction for developing more efficient algorithms in spatially complex environments.
Submitted: Dec 19, 2024