Paper ID: 2412.15750
Extracting Interpretable Task-Specific Circuits from Large Language Models for Faster Inference
Jorge García-Carrasco, Alejandro Maté, Juan Trujillo
Large Language Models (LLMs) have shown impressive performance across a wide range of tasks. However, the size of LLMs is steadily increasing, hindering their application on computationally constrained environments. On the other hand, despite their general capabilities, there are many situations where only one specific task is performed, rendering all other capabilities unnecessary and wasteful. This leads us to the following question: Is it possible to extract the minimal subset from an LLM that is able to perform a specific task in a faster, standalone manner? Recent works on Mechanistic Interpretability (MI) have shown that specific tasks are performed by a localized subset of components, or circuit. However, current techniques used to identify the circuit cannot be used to extract it for its standalone usage. In this work, we propose a novel approach to automatically extract the subset of the LLM that properly performs a targeted task requiring no additional training and a small amount of data samples. We evaluate our approach on different tasks and show that the resulting models are (i) considerably smaller, reducing the number of parameters up to 82.77% and (ii) more interpretable, as they focus on the circuit that is used to carry out the specific task, and can therefore be understood using MI techniques.
Submitted: Dec 20, 2024