Paper ID: 2412.16098

Explainable AI for Multivariate Time Series Pattern Exploration: Latent Space Visual Analytics with Time Fusion Transformer and Variational Autoencoders in Power Grid Event Diagnosis

Haowen Xu, Ali Boyaci, Jianming Lian, Aaron Wilson

Detecting and analyzing complex patterns in multivariate time-series data is crucial for decision-making in urban and environmental system operations. However, challenges arise from the high dimensionality, intricate complexity, and interconnected nature of complex patterns, which hinder the understanding of their underlying physical processes. Existing AI methods often face limitations in interpretability, computational efficiency, and scalability, reducing their applicability in real-world scenarios. This paper proposes a novel visual analytics framework that integrates two generative AI models, Time Fusion Transformer (TFT) and Variational Autoencoders (VAEs), to reduce complex patterns into lower-dimensional latent spaces and visualize them in 2D using dimensionality reduction techniques such as PCA, t-SNE, and UMAP with DBSCAN. These visualizations, presented through coordinated and interactive views and tailored glyphs, enable intuitive exploration of complex multivariate temporal patterns, identifying patterns' similarities and uncover their potential correlations for a better interpretability of the AI outputs. The framework is demonstrated through a case study on power grid signal data, where it identifies multi-label grid event signatures, including faults and anomalies with diverse root causes. Additionally, novel metrics and visualizations are introduced to validate the models and evaluate the performance, efficiency, and consistency of latent maps generated by TFT and VAE under different configurations. These analyses provide actionable insights for model parameter tuning and reliability improvements. Comparative results highlight that TFT achieves shorter run times and superior scalability to diverse time-series data shapes compared to VAE. This work advances fault diagnosis in multivariate time series, fostering explainable AI to support critical system operations.

Submitted: Dec 20, 2024