Paper ID: 2412.17255
Unlocking Cross-Lingual Sentiment Analysis through Emoji Interpretation: A Multimodal Generative AI Approach
Rafid Ishrak Jahan, Heng Fan, Haihua Chen, Yunhe Feng
Emojis have become ubiquitous in online communication, serving as a universal medium to convey emotions and decorative elements. Their widespread use transcends language and cultural barriers, enhancing understanding and fostering more inclusive interactions. While existing work gained valuable insight into emojis understanding, exploring emojis' capability to serve as a universal sentiment indicator leveraging large language models (LLMs) has not been thoroughly examined. Our study aims to investigate the capacity of emojis to serve as reliable sentiment markers through LLMs across languages and cultures. We leveraged the multimodal capabilities of ChatGPT to explore the sentiments of various representations of emojis and evaluated how well emoji-conveyed sentiment aligned with text sentiment on a multi-lingual dataset collected from 32 countries. Our analysis reveals that the accuracy of LLM-based emoji-conveyed sentiment is 81.43%, underscoring emojis' significant potential to serve as a universal sentiment marker. We also found a consistent trend that the accuracy of sentiment conveyed by emojis increased as the number of emojis grew in text. The results reinforce the potential of emojis to serve as global sentiment indicators, offering insight into fields such as cross-lingual and cross-cultural sentiment analysis on social media platforms. Code: this https URL
Submitted: Dec 23, 2024